Objectives:

- Review the chain rule for derivatives.
- Define and use u-substitution for integrals.

Review: Compute the following derivatives:

1.
$$h(x) = f(g(x))$$

 $h'(x) =$
2. $f(x) = (x^3 + 2x)^5$
 $f'(x) =$
3. $g(x) = e^{x^2}$
 $g'(x) =$
4. $h(t) = (\sin(t))^3$
 $h'(t) =$

5.
$$k(x) = \ln(\tan(x))$$

 $k'(x) =$

6.
$$\ell(w) = \arctan(\cos(w))$$

 $\ell'(w) =$

Substitution:

Substitution: So, we now know $\int \frac{(\sec(x))^2}{\tan(x)} dx =$ _______. In general, $\int f'(g(x))g'(x) dx =$ _______. Another way we can write this is $\int f'(u) du =$ ______. We call this substituting u for g(x) and often refer to this method as ______. Examples:

1.
$$\int e^{\sin(x)} \cos(x) \, dx$$

2.
$$\int 3x^2 (x^3 + 5)^{10} dx$$

$$3. \int \frac{1}{t+2} dt$$

Sometimes we have to manipulate the integral before using substitution:

Example:
$$\int x^2 (x^3 + 7)^5 dx$$

Method 1: Solve for dx:

Method 2: "Fix-it-up":

Definite Integrals Using u-Substitution:

Example: $\int_0^1 x^2 (1+2x^3)^4 dx$

Method 1 : Change limits of integration:

Method 2 : Find integral in terms of original variable, then substitute.