Objectives:

- Review the chain rule for derivatives.
- Define and use u-substitution for integrals.

Review: Compute the following derivatives:

1. $h(x)=f(g(x))$
$h^{\prime}(x)=$
2. $f(x)=\left(x^{3}+2 x\right)^{5}$
$f^{\prime}(x)=$
3. $g(x)=e^{x^{2}}$
$g^{\prime}(x)=$
4. $h(t)=(\sin (t))^{3}$
$h^{\prime}(t)=$
5. $k(x)=\ln (\tan (x))$
$k^{\prime}(x)=$
6. $\ell(w)=\arctan (\cos (w))$
$\ell^{\prime}(w)=$

Substitution:

So, we now know $\int \frac{(\sec (x))^{2}}{\tan (x)} d x=$ \qquad .

In general, $\int f^{\prime}(g(x)) g^{\prime}(x) d x=$ \qquad .

Another way we can write this is $\int f^{\prime}(u) d u=$ \qquad . We call this substituting u for $g(x)$ and often refer to this method as

Examples:

1. $\int e^{\sin (x)} \cos (x) d x$
2. $\int 3 x^{2}\left(x^{3}+5\right)^{10} d x$
3. $\int \frac{1}{t+2} d t$

Sometimes we have to manipulate the integral before using substitution:
Example: $\int x^{2}\left(x^{3}+7\right)^{5} d x$
Method 1: Solve for $d x$:

Method 2: "Fix-it-up":

Definite Integrals Using u-Substitution:
Example: $\int_{0}^{1} x^{2}\left(1+2 x^{3}\right)^{4} d x$
Method 1: Change limits of integration:

Method 2 : Find integral in terms of original variable, then substitute.

